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Abstract 
We investigate an integrated approach to fault tolerance and 
dynamic power management in real-time embedded systems. Fault 
tolerance is achieved via checkpointing and power management is 
carried out using dynamic voltage scaling (DVS). We present 
feasibility-of-scheduling tests for checkpointing schemes for a 
constant processor speed as well as for variable processor speeds. 
DVS is then carried out on the basis of these feasibility analyses. 
Experimental results show that compared to fault-oblivious 
methods, the proposed approach significantly reduces power 
consumption and guarantees timely task completion in the presence 
of faults. 
 
1. Introduction 
      Fault tolerance techniques are needed to ensure the 
dependability of embedded systems that operate in harsh 
environmental conditions. These embedded systems also operate 
under severe energy limitations. In addition, many embedded 
systems execute real-time applications that require strict adherence 
to task deadlines. In this paper, we investigate an integrated 
approach that provides fault tolerance and dynamic power 
management (DPM) in hard real-time embedded systems. We 
extend a recent energy-aware adaptive checkpointing scheme that 
considers a single task in a soft real-time system [1]. 
      Dynamic voltage scaling (DVS) is a popular technique for 
reducing power consumption during system operation [2, 3]. Fault 
tolerance is typically achieved in real-time systems through 
checkpointing [4]. At each checkpoint, the system saves its state in 
a secure device. When a fault is detected, the system rolls back to 
the most recent checkpoint and resumes normal execution. The 
checkpointing interval, i.e., duration between two consecutive 
checkpoints, must be carefully chosen to balance checkpointing 
cost with the re-execution time. * 
      DPM and fault tolerance for embedded real-time systems have 
largely been studied as separate problems in the literature. DVS 
techniques for power management do not consider fault tolerance 
[2, 3], and checkpoint placement strategies for fault tolerance do 
not address DPM [5, 6]. It is only recently that an attempt has been    
made to combine fault tolerance with DPM [1]. 
      There are three main reasons for combining DPM with fault 
tolerance in real-time embedded systems. Increased die 
temperatures due to higher processor speeds create thermal stresses 
on the die and undermine system reliability. In order to mitigate 
reliability problems caused by high die temperatures, we can either 
lower energy consumption through DPM techniques such as DVS, 
or we can adopt fault tolerance techniques such as checkpointing. 
Better still, a combination of DVS and checkpointing can be used. 

                                                 
*This research was sponsored in part by DARPA, and administered by the 
Army Research Office under Emergent Surveillance Plexus MURI Award 
No. DAAD19-01-1-0504. Any opinions, findings, and conclusions or 
recommendations expressed in this publication are those of the authors and 
do not necessarily reflect the views of the sponsoring agencies. 

      The second reason is motivated by the need to meet the task 
deadlines in real-time systems. If faults occur frequently, the 
processor speed can be scaled up dynamically (within limits 
imposed by higher die temperatures) and more slack can be 
provided to the task, which allows more time for rollback recovery.  
      The third motivation arises from shrinking process technologies 
in the nanotechnology realm. Lower processor voltages are likely 
to lead to lower noise margins and more transient faults, caused in 
part by single-event upsets.  
      We first present feasibility tests for fixed-priority real-time 
systems with checkpointing under constant processor speed. 
Following this, we extend these feasibility tests to variable-speed 
processors. Based on the results of the feasibility analyses, an on-
line dynamic speed-scaling scheme is further developed to reduce 
energy during task execution. The proposed approach is compared 
with a fault-oblivious DVS scheme in the presence of faults. 
 
2. Feasibility Analysis Under Constant Speed 
      We are given a set Γ = {τ1, τ2, …, τn} of n periodic real-time 
tasks, where task τi is modeled by a tuple τi  = (Ti, Di, Ei). The 
elements of the tuple are defined as follows: Ti is the period of τi, 
and Di is its deadline (Di ≤ Ti); Ei is the execution time of τi under 
fault-free conditions. Let the checkpointing cost be C. We make the 
following assumptions related to task execution and fault arrivals:   
(i) The task set Γ is scheduled using fixed-priority methods such as 
the rate-monotonic scheme [7]; (ii) the task set Γ is schedulable 
under fault free conditions; (iii) the priority of tasks are in 
decreasing order of the index i, i.e., task τi has higher priority than 
task τj if i < j; (iv) each instance of the task is released at the 
beginning of the period; (v) the checkpointing intervals for a task 
are equal; (vi) the times for rollback and state restoration are zero; 
(vii) faults are detected as soon as they occur, and (viii) no faults 
occur during checkpointing and rollback recovery. 
      In [8], a feasibility analysis is provided under the assumption 
that two successive faults arrive with a minimum inter-arrival time 
TF. This is not practical for realistic applications, where the fault 
occurrence can be bursty or memoryless. Therefore, we focus here 
on tolerating up to a given number of faults during task execution. 
No additional assumption is made regarding fault arrivals. 
      Since the task set is periodic, the total execution time can be 
very high if we consider a large number of periods. We therefore 
need to identify an appropriate k-fault-tolerant condition for shorter 
time duration. Here we provide two solutions corresponding to two 
different fault-tolerance requirements.  One is to tolerate k faults for 
each job, termed as job-oriented fault-tolerance; the other is to 
tolerate k faults within a hyperperiod (defined as the least common 
multiple of all the task periods [7]), termed as hyperperiod-oriented 
fault-tolerance.  
      We first consider the case of a single job. Suppose m 
checkpoints are inserted equidistantly to tolerate k faults in one job. 
The worst-case response time R for the job is composed of three 
terms: the task execution time E, the checkpointing cost mC, and 
the recovery cost kE/(m+1), i.e. )1/( +++= mkEmCER . To 
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satisfy the deadline constraint, we must have 
DmkEmCE ≤+++ )1/( .  

      Let DmkEmCEmf −+++= )1/()( .  The minimum value of 

f(m) is obtained for m = 1/0 −= CkEm . Since m is a non-negative 

integer, we have  )0,1( /max0 −= CkEm . 
      If f(m0) ≤ 0, there exists equidistant checkpointing schemes for 
k-fault-tolerance, and the response time is minimum when m0 
checkpoints are inserted. If f(m0) > 0, then no equidistant 
checkpointing schemes exists for tolerating up to k faults. 
      The feasibility analysis for more than one job is based on the 
time-demand analysis for fixed-priority scheduling [7]. The steps in 
the analysis are as following: 
 (1) Compute the response time Ri for τi according to the 

equation:  ∑
−

=
+=

1

1
/

i

h hhiii ETRER . Here Th and Eh are the period 

and the execution time of a task τh with higher priority than τi. This 
equation can be solved by forming a recurrence relation: 

  h

i

h h
j

ii
j

i ETRER ∑
−

=

+ +=
1

1

)()1( / .                                                   (1) 

(2) The iteration is terminated either when )()1( j
i

j
i RR =+  and 

i
j

i DR ≤)(  for some j or when i
j

i DR >+ )1( , whichever occurs 
sooner. In the former case, τi is schedulable; in the later case, τi is 
not schedulable. 
      According to [7], the time complexity of the time-demand 
analysis for each task is O(nR), where R is the ratio of the largest 
period to the smallest period. 
 
2.1 Job-oriented fault-tolerance: tolerating k faults in each job  
      In this case, we require that the task set can meet the deadline 
requirement under the condition that at most k faults occur during 
the execution of each job.  
      Under the worst-case condition, the additional time due to 
checkpointing and recovery should be incorporated.  When there 
are mj equidistant checkpoints for each instance of τj, we have:  

 ∑
−
= +++++++= 1
1 ))1/((/))1/(( i

h hhhhhiiiiii mkECmETRmkECmER
      To minimize all response times, we must have: 

  )1()0,1( /max* niCkEm ii ≤≤−= . Then we can employ the 
recurrence equation as follows: 

 ∑
−

=

+ +++++++=
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1

**)(**)1( ))1/((/))1/((
i

h hhhhh
j

iiiii
j

i mkECmETRmkECmER .     
      When )()1( j

i
j

i RR =+  and i
j

i DR ≤)(  for some j, τi is 

schedulable; when i
j

i DR >+ )1( , τi is not schedulable. The total time 

complexity here is )( 2RnO , where R is the ratio of the largest 
period to the smallest period. 
Example 1: Consider a task set composed of two tasks: τ1 = (60, 
18, 7) and τ2 = (80, 34, 8), and let k = 3, C = 1. Then m1

* = 4 and 
m2

* = 4. After applying the recurrence equation, we get the 
response times: R1 = 15.2 < 18; R2 = 33 < 34. Thus checkpointing is 
feasible for this task set if up to three faults occur during each job. 
Next we examine the case of k = 4. For this case m1

* = 5 and m2
* = 

5.  The response times are: R1 = 16.7 < 18 and R2 = 35 > 34. As a 
result, checkpointing is not feasible if up to four faults need to be 
tolerated for each job. 
 
 

2.2 Hyperperiod-oriented fault-tolerance: tolerating k faults in 
a hyperperiod  
      In [8], an algorithm is presented to determine the checkpointing 
interval under the assumption that two successive faults arrive with 
a minimum inter-arrival time TF. Let Fj, ij ≤≤1 , be the extra 
computation time needed by τj, ij ≤≤1 , if one fault occurs during 
the execution. When there are mj equidistant checkpoints for τj, the 
response time Ri for τi is expressed as follows in [8]: 

    }{max/)(/)( 1
1
1 jijFi

i
h hhhiiii FTRCmETRCmER ≤≤
−
= ++++= ∑ , 

where )1/( += jjj mEF .           
      The checkpoint is examined starting from high-priority tasks to 
low-priority tasks. For each task τj, the algorithm tries to reduce the 
response time by reducing the maximum additional computation   
time, i.e., }{max1 jij F≤≤ . The details in [8] are as follows:  

(1) Initially 0=im  for ni ≤≤1 . 
(2) Starting from the highest-priority task τ1, calculate the 
minimum number of checkpoints m1 required to make it 
schedulable.  
(3) In decreasing order of task priorities, calculate the response 
time Ri of task τi. If ii DR ≤ , move to the next task; otherwise Ri 
needs to be reduced further. The only way to reduce Ri is to add 
more checkpoints to decrease the re-execution time caused by 
faults, i.e., Fj, for ij ≤≤1 . In fact, the parameter }{max1 jij F≤≤  is 
relevant here and should be reduced. The task τ* that contributes 
the most to the task re-execution time is found and one more 
checkpoint is added to τ*. Then Ri is recalculated. This process is 
repeated until either ii DR ≤  or the deadline Di is exceeded. 
      While the schedulability test in [8] provides useful guidelines 
on task schedulability in the presence of faults, its drawback is that 
two key issues that affect schedulability are not addressed.  
1. Checkpoints are added to the higher-priority tasks in certain 
iterations in order to satisfy deadline constraints for all the tasks. 
These higher-priority tasks, however, have met their deadline in 
earlier iterations. The addition of more checkpoints to them 
inevitably changes their response times. As a result, it is necessary 
to trace back to re-calculate their response times and adjust their 
checkpoints. This issue has not been addressed in [8]. 
2. It is necessary to determine a bound on the number of 
checkpoints beyond which the addition of checkpoints does not 
improve schedulability. In [8], the schedulability test concludes that 
τi is not schedulable once Ri increases during the addition of 
checkpoints. However, this does not always hold. We present a 
counterexample below. 
Example 2:  Consider two tasks τ1 = (100, 18, 7.999) and τ2 = 
(101, 21, 8), and let TF  = 102, C = 0.1. We follow the steps from 
[8] as shown below: 
(1) Initially m1 = m2 = 0, and F1 = 7.999, F2 = 8; 
(2) Next τ1 is examined: R1 =15.998 < 18. No checkpoints are 
needed for τ1. Thus m1 = m2 =0.  
(3) Next τ2 is examined: R2 = 23.999 > 21. Since F2 > F1, one 
checkpoint is added to τ2, thus m1 = 0 and m2 =1. Then F1 = 7.999, 
F2 = 4 and 999.7}{max 21 =≤≤ jj F . We recalculate the response 
time R2 = 24.098 > 23.999. According to [8], τ2 is not schedulable. 
However, this is not correct. We continue the above step and find 
F1 > F2, then one more checkpoint is added to τ1; as a result m1 = 1, 
m2 = 1. Then F1 = 9995.3)11/(999.7 =+ , F2 = 4, and 
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4}{max 21 =≤≤ jj F . We recalculate the response time of τ1 and τ2: 
R1 = 12.0985 < 18 and R2 = 20.199 < 21, which implies that both 
tasks are schedulable. 
      We require here that the tasks meet their deadlines under the 
condition that at most k faults occur during a hyperperiod. Based on 
the schedulability test in [8], we solve the two aforementioned 
problems as follows.  
      The response time Ri for τi is expressed as: 

  }{max)(/)( 1
1
1 jij

i
h hhhiiii FkCmETRCmER ≤≤
−
= ++++= ∑ ,  

where )1/( += jjj mEF .                                                                                 
      The first problem can be solved using a recursive method. Any 
time we increase the number of checkpoints for a task, all the 
lower-priority tasks need to be re-examined. We solve the second 
problem by determining a bound on the number of checkpoints 
such that if the task set cannot be made schedulable using this 
number of checkpoints, it cannot be scheduled by adding more 
checkpoints. Both the checkpointing cost and the timing constraints 
must be taken into account.  
(1) Analysis of a bound based on checkpointing tradeoffs 
      The effect of adding more checkpoints is two-fold. First it 
increases the execution time due to the checkpoint cost, which runs 
contrary to the goal of reducing the response time. On the other 
hand, it decreases re-execution due to a fault, which helps in 
reducing the response time. Suppose the task execution time is E 
and m checkpoints have already been added. If another checkpoint 
is now added, the reduction of re-execution time under the k-fault-
tolerance requirement is simply: 

)]2)(1/[()2/()1/( ++=+−+ mmkEmkEmkE .  
      We combine the two impacts of checkpointing on the re-
execution time to define the tradeoff function tr(m) as: 

)]2)(1/[()( ++−= mmkECmtr .  
      If 0)( <mtr , then adding one more checkpoint can potentially 
reduce the response time; otherwise, it is not helpful since it 
increases the task re-execution time due to the k faults. 
      For each task τi with mi checkpoints, we can calculate the 
tradeoff function tri(mi). Solving for 0)'( =ii mtr , we get: 

2/)/413(' CkEm ii ++−=  for ni ≤≤1 . Since 0'≥im , we 

further express it as:   )0,2/)/413(max(' CkEm ii ++−=  for 

ni ≤≤1 . This gives an upper bound on the number of checkpoints, 
which is based on the tradeoff function. 
(2) Analysis of a bound based on timing constraints 
      Under fault-free conditions, the response time 0

iR  for task τi 

can be easily obtained. After incorporating the checkpointing cost 
and timing constraints, we have: iii DCmR ≤+0 , which implies that 

CRDm iii /)( 0−≤ . Let  CRDm iii /)( 0# −= .  
      Combining the two bounds, we define 

)1(),'min( #* nimmm iii ≤≤= . Then mi
* is a tighter upper bound 

on the number of checkpoints required to make τi schedulable. 
      A checkpointing algorithm ADV-CP for off-line feasibility 
analysis is described in Figure 1, which takes as an input parameter 
the real-time task set Γ. All tasks are initially set unschedulable. 
The recursive checkpointing procedure CP(p,q) is described in 
Figure 2, where p and q are the lowest and highest index for the 
task subset under consideration.  

      The recursive execution of ),( qpCP  takes ∑ =

n

i imRnO
1

*2 )(  

time. Let ∑ =
=

n

i imM
1

** . Adding all the cost together, the total 

complexity for the feasibility test & checkpointing procedure is 
)( *2RMnO , which is only quadratic in the number of tasks n. 

Furthermore, we note that the complexity can be reduced if we can 
make *M  as small as possible. That is why we combine both the 
tradeoff function and timing constraints to obtain a relatively tight 
bound for mi

*. 
 
3. Feasibility Analysis with DVS 
      We are given a variable-speed processor, which is equipped 
with l speeds f1, f2, …, fl. In addition, fi < fj if i < j. Let c be the 
number of clock cycles that a single checkpoint takes. We are also 
given a set Γ = {τ1, τ2, …, τn} of n periodic real-time tasks, where 
task τi is modeled by a tuple τi  = (Ti, Di, Ei). The elements of the 
tuple are defined as follows: Ti is the period of τi and Di is its 
deadline (Di ≤ Ti); Ei is the number of computation cycles of τi 
under fault-free conditions. 
      In addition to the assumptions in Section 2, we assume the task 
set Γ is schedulable under fault free conditions at the lowest speed. 
For the sake of simplicity of presentation, we also assume without 
loss of generality that speed switching does not incur extra cost in 
terms of time and energy.  
      We note that if supply voltage Vdd is used for a task with N 
single-cycle instructions, the energy consumption can be expressed 
as (α is a constant): ddNVNEng 2)( α=                                       (2) 
      We also note that the processor clock frequency f can be 
expressed in terms of the supply voltage Vdd and threshold voltage 
Vt as ddtdd VVVf /)( 2−= β , where β is a constant. 
      From above, we obtain Vdd as a function of f: 

22))2/(())2/(()( tttdd VfVfVfV −+++= ββ                            (3) 
      According to Equation (2), energy consumption is a function of 

N and f: )(),( 2 fNVfNEng ddα= , where Vdd(f) is expressed in 
Equation (3). Here we assume Vt = 0 without loss of generality. 
      In our proposed scheme, speed scaling can be done for a 
particular application, i.e., all tasks for the application are assigned 
the same speed, or at the task level, i.e., different tasks can be 
assigned different speed. Speed scaling can also be carried out at 
the job level, i.e., different jobs for a task can have different speeds. 
Let s(τi) : τi → fj (1 ≤ i ≤ n,  1 ≤ j ≤ l) denote the speed scaling 
function, which maps a task τi  to speed fj.  
      Our aim is to meet task deadlines deterministically, even 
though k faults occur, while minimizing energy consumption. First, 
we need to identify appropriate time duration to evaluate the energy 
consumption. We consider the hyperperiod as the time duration. 
Second, the criterion of minimizing energy consumption needs to 
be clarified. Based on the application requirement, we can choose 
either a best-case or a worst-case energy consumption value. By 
best-case, we refer to the results obtained under the fault-free 
condition, while worst-case refers to the results obtained when all k 
faults occur. In our work, we focus on minimizing energy 
consumption under the worst-case condition during a hyperperiod. 
Let the hyperperiod denoted by Ht and the number of checkpoints 
for τi denoted by mi; the total energy consumption during one 
hyperperiod is expressed as:  

∑ =
+++= n

i
iiiiii smkEcmEEngTHtengTotal

1
))(),1/(()/(_ τ      (4) 
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Procedure ADV-CP (Γ)  
begin 
1. for i = 1 to n do  
       mi = 0; compute mi

*; Rj = ∞; 
2. CP(1, n). 
end  

Figure 1: Advanced checkpointing procedure. 
Procedure CP (p, q) 
1. if (Rp ≤ Dp & Rp+1 ≤ Dp+1 & …& Rq ≤ Dq)   
         return(“task subset schedulable”); 
2. elseif (m1 >  m1

* & m2 >  m2
* & …& mq>  mq

*)    
         exit(“task set unschedulable”); 
3. else{for j = p to q do{ 
       3.1 compute Rj; 
       3.2 while (Rj > Dj) do{ 
           3.2.1  find h∈ [1, j] such that Fh = max(F1, F2, …, Fj);
           3.2.2  mh = mh + 1; 
           3.2.3  Fh = Eh/(mh + 1); 
           3.2.4  CP (h, j);}}} 

 
Figure 2: Recursive checkpointing procedure. 

 
      The off-line feasibility analysis with DVS provides two 
important pieces of information: first, it provides the feasibility 
analysis under the worst-case scenario; second, it provides static 
results such as speed assignment and checkpoint interval, which 
can be further used for on-line adjustment during task execution. 
 
3.1 Job-oriented fault-tolerance with DVS 
      The worst-case response time for task τi can be expressed as:  

∑
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          (5)  

      To minimize all response times, we must have: 

  )1()0,1( /max* niCkEm ii ≤≤−= . Then we can employ the 
recurrence equation as follows: 
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      If )()1( j
i

j
i RR =+  and i

j
i DR ≤)(  for some j, τi is schedulable; if 

i
j

i DR >+ )1( , τi is not schedulable.  
      Since the optimal number of checkpoints is fixed a priori for 
each task, we need to choose appropriate processor speeds to 
satisfy the deadline constraint for each task.  
(1) Application-level speed scaling: all tasks have the same speed. 
Here all tasks have the same speed f* and s(τ1) = s(τ2) = … =  s(τn) 
= f*, where f* ∈  {f1, f2, …, fl}. Equation (5) is simplified as:          
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      The iterative method described in Section 2.1 can be used here 
to determine f*. To examine the feasibility for each task, all 
possible speeds have to be tested. There are l possibilities in total. 
The lowest speed that satisfies the timing constraints is selected to 
minimize energy consumption.  
(2) Task-level speed scaling: different tasks can have different 
speeds. To obtain an optimal solution, we use an exhaustive 
method. Since each task can be run at l speeds, there are ln possible 
speed combinations for n tasks. For each speed combination, the 
feasibility test is performed according to Equation (5). Meanwhile, 
the energy consumption is calculated from Equation (4). The speed 
combination that satisfies the timing constraints with the minimum 

energy consumption is chosen as the optimal solution.  
 
3.2 Hyperperiod-oriented fault-tolerance with DVS 
      The worst-case response time for task τi can be expressed as:  

  }{max)(/)(/)(/)(
1

1

1 jij

i

h hhhhiiiii FkscmETRscmER
≤≤

−

=
++++= ∑ ττ

where )]1)((/[ += jjjj msEF τ .                                                      (6) 
(1) Application-level speed scaling: all tasks have the same speed. 
Here all tasks have the same speed f* and s(τ1) = s(τ2) = … =  s(τn) 
= f*, where f* ∈  {f1, f2, …, fl}. Equation (6) is simplified as:  

  }{max/)(//)(
1

1

1

**
jij

i

h hhhiiii FkfcmETRfcmER
≤≤

−

=
++++= ∑ , 

where )]1(/[ * += jjj mfEF .           
      In contrast to (1) in Section 3.1, we first fix the speed instead of 
the number of checkpoints. For each given speed f*, we examine 
the feasibility of the task set using the method in Section 2.2. If it is 
schedulable, the corresponding number of checkpoints for each task 
can be obtained. The energy consumption is calculated from 
Equation (4).  The lowest speed that satisfies the timing constraints 
is selected to minimize energy consumption.  
(2) Task-level speed scaling: different tasks can have different 
speeds. To obtain an optimal solution, we use an exhaustive 
method. Since each task can be run at l speeds, there are ln possible 
speed combinations for n tasks. For each speed combination, the 
feasibility test is performed according to Equation (6). The method 
in Section 2.2 is employed and the corresponding number of 
checkpoints is obtained. Meanwhile, the energy consumption is 
calculated from Equation (4). The speed combination that satisfies 
the timing constraints with the minimum energy consumption is 
chosen as the optimal solution.  
 
3.3 Job-level on-line speed scaling 
      As discussed in Sections 3.1 and 3.2, the speed assignment and 
the checkpointing interval are determined by the off-line feasibility 
analysis. A static sequence of jobs is obtained and their timing 
parameters such as release times and execution times are known a 
priori under the worst case. However, if only such static measures 
are used during run-time, it will not be possible to make use of idle 
intervals. Clearly, further energy saving is possible through 
additional on-line speed scaling. 
      The on-line speed scaling procedure, done at the job-level, is 
adaptive with respect to fault occurrence. It makes use of a simple 
run-time adaptation mechanism. The key features are: 
•  Once a job completes, the release time of the next job is adjusted 

dynamically during run-time. 
•  The processor is run at an appropriate speed such that either the 

current job completes before its deadline, or before the static 
release time of the next job, whichever is sooner. 

 
4. Experimental Results 
      In this section, we compare the performance of our energy-
aware fault-tolerance scheme with the DVS technique proposed in 
[3], referred to as VSLP.  Our goal here is to highlight the impact 
of fault occurrences on a fault-oblivious DVS scheme. 
      We use the following notation to refer to the various types of 
schemes: (1) JFTA: job-oriented fault tolerance with application-
level speed scaling; (2) JFTT: job-oriented fault tolerance with 
task-level speed scaling; (3) HFTA: hyperperiod-oriented fault 
tolerance with application-level speed scaling; (4) HFTT: 
hyperperiod-oriented fault-tolerance with task-level speed scaling.  
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      Since the VSLP scheme as presented in [3] does not provide 
fault tolerance, we assume that it simply re-executes a job when a 
fault occurs. Furthermore, since JFTA is a special case of JFTT and 
HFTA is a special case of HFTT, we compare VSLP with the JFTT 
and HFTT schemes. For both cases, we first show that JFTT and 
HFTT can schedule task sets even when VSLP cannot do so; we 
then show that these schemes can save more energy via 
checkpointing in the presence of faults.  
 
4.1 JFTT vs. VSLP 
      As pointed out in [8], a system of periodic preemptable tasks, 
each of whose relative deadline D is equal to its period T, is 
schedulable on one processor according to the rate monotonic 
algorithm if and only if its total task utilization is equal to or less 
than 1. In the presence of faults, since the re-execution takes extra 
time and the total task utilization will be increased accordingly, a 
task set that is schedulable under fault-free conditions may no 
longer be schedulable. Here we construct a task set whose total 
utilization is greater than 1 for VSLP under faulty conditions even 
though the entire task set is executed with the highest speed, and 
show that this task set is schedulable using JFTT. 
      Suppose we are given three tasks τ1 = (12000, 12000, 2200), τ2 
= (18000, 18000, 3000) and τ3 = (24000, 24000, 4000), and three 
normalized processor speeds 1.0, 0.8 and 0.6. Let a single 
checkpoint take c = 50 cycles. If only k = 1 fault occurs during each 
job, the total utilization for VSLP under the highest speed is found 
to be 1.033. This implies that VSLP cannot schedule the task set 
when one or more faults occur during each job. However, the 
experiments show that JFTT can tolerate up to 6 faults during each 
job. The speed assignment (s1, s2, s3) and number of checkpoints 
(m1, m2, m3) for τ1, τ2 and τ3, and total energy consumption are 
shown in Table 1. 
      Next we show that JFTT saves more energy than VSLP in the 
presence of faults when both schemes are feasible. Consider three 
tasks τ1 = (12000, 10000, 500), τ2 = (18000, 16000, 1000) and τ3 = 
(24000, 22000, 2000), and three normalized processor speeds 1.0, 
0.8 and 0.6. Let a single checkpoint take c = 50 cycles. The energy 
saving for JFTT over VSLP is shown in Table 2. Compared to 
VSLP, JFTT can save up to 75% energy in the presence of faults.  
      To demonstrate the effect of checkpointing cost, we fix the 
value of k and change the value of c for the same task set used in 
Table 2. The results are shown in Table 3. 
 
4.2 HFTT vs. VSLP 
      We now show that HFTT can schedule task sets in the presence 
of faults, even when VSLP fails to do so. Suppose we are given 
three tasks τ1 = (12000, 12000, 2200), τ2 = (18000, 18000, 3000) 
and τ3 = (24000, 24000, 4000), and three normalized processor 
speeds 1.0, 0.8 and 0.6. Let a single checkpoint take c = 50 cycles. 
As indicated in Section 4.1, VSLP cannot schedule this task set 
when one or more faults occur during each job. Here although we 
examine the fault occurrence in one hyperperiod, the WCET value 
of each task for VSLP remains the same as that in Section 4.1. As a 
result, VSLP still cannot schedule this task set if there are any fault 
occurrences. On the other hand, HFTT can tolerate more than 10 
faults during a hyperperiod. The speed assignment (s1, s2, s3) and 
number of checkpoints (m1, m2, m3) for τ1, τ2 and τ3, and total 
energy consumption are shown in Table 4. 
      Next we show that HFTT saves more energy than VSLP in the 
presence of faults when both schemes are feasible. Consider three 
tasks τ1 = (12000, 10000, 500), τ2 = (18000, 16000, 1000) and τ3 =  
(24000, 22000, 2000), and three normalized processor speeds 1.0, 

JFTT  
k (s1, s2, s3) (m1, m2, m3) Energy 

 
VSLP 

1 (0.8, 0.8, 0.8) (7, 8, 9) 29717 
3 (0.8, 1.0, 0.8) (12, 14, 16) 40473 
6 (1.0, 1.0, 1.0) (17, 19, 22) 60530 

Infeasible 

Table 1: JFTT vs. VSLP (Part 1). 
k Engy_JFTT Engy_VSLP Engy_JFTT/ Engy_VSLP 
1 6522 9360 0.70 
2 7362 14040 0.52 
3 7981 33280 0.24 

Table 2: JFTT vs. VSLP (Part 2). 
c Engy_JFTT Engy_VSLP Engy_JFTT/ Engy_VSLP 
50 7981 33280 0.24 
150 10206 33280 0.31 
250 11844 33280 0.36 

Table 3: JFTT vs. VSLP (Part 3). 
HFTT  

k (s1, s2, s3) (m1, m2, m3) Energy 
 

VSLP 
1 (0.6, 0.8, 0.8) (3, 3, 4) 21716 
4 (0.8, 1.0, 0.8) (5, 6, 10) 32187 
10 (1.0, 1.0, 1.0) (10, 14, 19) 47850 

Infeasible 

Table 4: HFTT vs. VSLP (Part 1). 
k Engy_HFTT Engy_VSLP Engy_HFTT/ Engy_VSLP 
1 5400 9360 0.58 
2 5508 14040 0.39 
3 5760 33280 0.17 

Table 5: HFTT vs. VSLP (Part 2). 
 
0.8 and 0.6. Let a single checkpoint take c = 100 cycles. The energy 
saving for HFTT over VSLP is demonstrated in Table 5.  
 
5. Conclusions 
      We have shown how dynamic adaptation for fault tolerance and 
power management can be carried out in embedded systems. Fault 
tolerance is achieved via checkpointing and power management is 
carried out using DVS. We have presented feasibility-of-scheduling 
tests for checkpointing schemes under both constant processor 
speed and variable processor speed. Two feasibility tests have been 
developed for application-level and task-level speed scaling, 
respectively. Based on the results of the feasibility analyses, on-line 
dynamic speed scaling can be employed to further reduce energy. 
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